连接的原理

连接简介

连接的本质

为了故事的顺利发展,我们先建立两个简单的表并给它们填充一点数据:

mysql> CREATE TABLE t1 (m1 int, n1 char(1));
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 (m2 int, n2 char(1));
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO t1 VALUES(1, 'a'), (2, 'b'), (3, 'c');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t2 VALUES(2, 'b'), (3, 'c'), (4, 'd');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

我们成功建立了 t1 、 t2 两个表,这两个表都有两个列,一个是 INT 类型的,一个是 CHAR(1) 类型的,填充好数据的两个表长这样:

mysql> SELECT * FROM t1;
+------+------+
| m1 | n1 |
+------+------+
| 1 | a |
| 2 | b |
| 3 | c |
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+------+
| m2 | n2 |
+------+------+
| 2 | b |
| 3 | c |
| 4 | d |
+------+------+
3 rows in set (0.01 sec)

连接 的本质就是把各个连接表中的记录都取出来依次匹配的组合加入结果集并返回给用户。所以我们把 t1 和 t2 两个表连接起来的过程如下图所示:

image-20240809232240419

这个过程看起来就是把 t1 表的记录和 t2 的记录连起来组成新的更大的记录,所以这个查询过程称之为连接查询。连接查询的结果集中包含一个表中的每一条记录与另一个表中的每一条记录相互匹配的组合,像这样的结果集就可以称之为 笛卡尔积

在 MySQL 中,连接查询的语法也很随意,只要在 FROM 语句后边跟多个表名就好了,比如我们把 t1 表和 t2 表连接起来的查询语句可以写成这样:

mysql> SELECT * FROM t1, t2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 1 | a | 2 | b |
| 2 | b | 2 | b |
| 3 | c | 2 | b |
| 1 | a | 3 | c |
| 2 | b | 3 | c |
| 3 | c | 3 | c |
| 1 | a | 4 | d |
| 2 | b | 4 | d |
| 3 | c | 4 | d |
+------+------+------+------+
9 rows in set (0.02 sec)

连接过程简介

如果我们乐意,我们可以连接任意数量张表,但是如果没有任何限制条件的话,这些表连接起来产生的 笛卡尔积 可能是非常巨大的。比方说3个100行记录的表连接起来产生的 笛卡尔积 就有 100×100×100=1000000 行数据!所以在连接的时候过滤掉特定记录组合是有必要的,在连接查询中的过滤条件可以分成两种:

  • 涉及单表的条件

    这种只设计单表的过滤条件我们之前都提到过一万遍了,我们之前也一直称为 搜索条件 ,比如 t1.m1 > 1是只针对 t1 表的过滤条件, t2.n2 < ‘d’ 是只针对 t2 表的过滤条件。

  • 涉及两表的条件

    这种过滤条件我们之前没见过,比如 t1.m1 = t2.m2 、 t1.n1 > t2.n2 等,这些条件中涉及到了两个表。

看一下携带过滤条件的连接查询的大致执行过程了,比方说下边这个查询语句:

SELECT * FROM t1, t2 WHERE t1.m1 > 1 AND t1.m1 = t2.m2 AND t2.n2 < 'd';

在这个查询中我们指明了这三个过滤条件:

  • t1.m1 > 1
  • t1.m1 = t2.m2
  • t2.n2 < ‘d’

那么这个连接查询的大致执行过程如下:

  • 首先确定第一个需要查询的表,这个表称之为 驱动表 。假设使用 t1 作为驱动表,那么就需要到 t1 表中找满足 t1.m1 > 1 的记录,因为表中的数据太少,我们也没在表上建立二级索引,所以此处查询 t1 表的访问方法就设定为 all 吧,也就是采用全表扫描的方式执行单表查询。

    image-20240809232554688
  • 针对上一步骤中从驱动表产生的结果集中的每一条记录,分别需要到 t2 表中查找匹配的记录,所谓 匹配的记录 ,指的是符合过滤条件的记录。因为是根据 t1 表中的记录去找 t2 表中的记录,所以 t2 表也可以被称之为 被驱动表 。上一步骤从驱动表中得到了2条记录,所以需要查询2次 t2 表。此时涉及两个表的列的过滤条件 t1.m1 = t2.m2 就派上用场了:

    • 当 t1.m1 = 2 时,过滤条件 t1.m1 = t2.m2 就相当于 t2.m2 = 2 ,所以此时 t2 表相当于有了 t2.m2 = 2 、 t2.n2 < ‘d’ 这两个过滤条件,然后到 t2 表中执行单表查询。

    • 当 t1.m1 = 3 时,过滤条件 t1.m1 = t2.m2 就相当于 t2.m2 = 3 ,所以此时 t2 表相当于有了 t2.m2 = 3 、 t2.n2 < ‘d’ 这两个过滤条件,然后到 t2 表中执行单表查询。

      所以整个连接查询的执行过程就如下图所示:

      image-20240809232731641

也就是说在两表连接查询中,驱动表只需要访问一次,被驱动表可能被访问多次。

内连接和外连接

为了大家更好理解后边内容,我们先创建两个有现实意义的表,

CREATE TABLE student (
number INT NOT NULL AUTO_INCREMENT COMMENT '学号',
name VARCHAR(5) COMMENT '姓名',
major VARCHAR(30) COMMENT '专业',
PRIMARY KEY (number)
) Engine=InnoDB CHARSET=utf8 COMMENT '学生信息表';

CREATE TABLE score (
number INT COMMENT '学号',
subject VARCHAR(30) COMMENT '科目',
score TINYINT COMMENT '成绩',
PRIMARY KEY (number, score)
) Engine=InnoDB CHARSET=utf8 COMMENT '学生成绩表';

我们新建了一个学生信息表,一个学生成绩表,然后我们向上述两个表中插入一些数据,为节省篇幅,具体插入过程就不唠叨了,插入后两表中的数据如下:

两表中的数据如下:

mysql> SELECT * FROM student;
+----------+--------+------------------+
| number | name | major |
+----------+--------+------------------+
| 20180101 | 杜子腾 | 软件学院 |
| 20180102 | 范统 | 计算机科学与工程 |
| 20180103 | 史珍香 | 计算机科学与工程 |
+----------+--------+------------------+
3 rows in set (0.01 sec)

mysql> SELECT * FROM score;
+----------+--------------------+-------+
| number | subject | score |
+----------+--------------------+-------+
| 20180101 | 母猪的产后护理 | 78 |
| 20180101 | 论萨达姆的战争准备 | 88 |
| 20180102 | 论萨达姆的战争准备 | 98 |
| 20180102 | 母猪的产后护理 | 100 |
+----------+--------------------+-------+
4 rows in set (0.01 sec)

我们想把每个学生的考试成绩都查询出来就需要进行两表连接了(因为 score 中没有姓名信息,所以不能单纯只查询 score 表)。连接过程就是从 student 表中取出记录,在 score 表中查找 number 相同的成绩记录,所以过滤条件就是 student.number = socre.number ,整个查询语句就是这样:

mysql> SELECT s1.number, s1.name, s2.subject, s2.score FROM student AS s1, score AS s2 WHERE s1.number = s2.number;
+----------+--------+--------------------+-------+
| number | name | subject | score |
+----------+--------+--------------------+-------+
| 20180101 | 杜子腾 | 母猪的产后护理 | 78 |
| 20180101 | 杜子腾 | 论萨达姆的战争准备 | 88 |
| 20180102 | 范统 | 论萨达姆的战争准备 | 98 |
| 20180102 | 范统 | 母猪的产后护理 | 100 |
+----------+--------+--------------------+-------+
4 rows in set (0.00 sec)

各个同学对应的各科成绩就都被查出来了,可是有个问题, 史珍香 同学,也就是学号为 20180103 的同学因为某些原因没有参加考试,所以在 score 表中没有对应的成绩记录。那如果老师想查看所有同学的考试成绩,即使是缺考的同学也应该展示出来,但是到目前为止我们介绍的 连接查询 是无法完成这样的需求的。我们稍微思考一下这个需求,其本质是想:驱动表中的记录即使在被驱动表中没有匹配的记录,也仍然需要加入到结果集。为了解决这个问题,就有了 内连接 和 外连接 的概念:

  • 对于 内连接 的两个表,驱动表中的记录在被驱动表中找不到匹配的记录,该记录不会加入到最后的结果集,我们上边提到的连接都是所谓的 内连接 。

  • 对于 外连接 的两个表,驱动表中的记录即使在被驱动表中没有匹配的记录,也仍然需要加入到结果集。

    在 MySQL 中,根据选取驱动表的不同,外连接仍然可以细分为2种:

    • 左外连接

      选取左侧的表为驱动表。

    • 右外连接

      选取右侧的表为驱动表。

这样仍然存在问题,即使对于外连接来说,有时候我们也并不想把驱动表的全部记录都加入到最后的结果集。这就犯难了,有时候匹配失败要加入结果集,有时候又不要加入结果集。把过滤条件分为两种不就解决了这个问题了么,所以放在不同地方的过滤条件是有不同语义的:

  • WHERE 子句中的过滤条件

    WHERE 子句中的过滤条件就是我们平时见的那种,不论是内连接还是外连接,凡是不符合 WHERE 子句中的过滤条件的记录都不会被加入最后的结果集。

  • ON 子句中的过滤条件

    对于外连接的驱动表的记录来说,如果无法在被驱动表中找到匹配 ON 子句中的过滤条件的记录,那么该记录仍然会被加入到结果集中,对应的被驱动表记录的各个字段使用 NULL 值填充。

    这个 ON 子句是专门为外连接驱动表中的记录在被驱动表找不到匹配记录时应不应该把该记录加入结果集这个场景下提出的,所以如果把 ON 子句放到内连接中, MySQL 会把它和 WHERE 子句一样对待,也就是说:内连接中的WHERE子句和ON子句是等价的。

一般情况下,我们都把只涉及单表的过滤条件放到 WHERE 子句中,把涉及两表的过滤条件都放到 ON 子句中,我们也一般把放到 ON 子句中的过滤条件也称之为 连接条件 。

左(外)连接的语法

比如我们要把 t1 表和 t2 表进行左外连接查询可以这么写:

SELECT * FROM t1 LEFT [OUTER] JOIN t2 ON 连接条件 [WHERE 普通过滤条件];

其中中括号里的 OUTER 单词是可以省略的。对于 LEFT JOIN 类型的连接来说,我们把放在左边的表称之为外表或者驱动表,右边的表称之为内表或者被驱动表。

对于左(外)连接和右(外)连接来说,必须使用 ON 子句来指出连接条件。

右(外)连接的语法

(外)连接和左(外)连接的原理是一样一样的,语法也只是把 LEFT 换成 RIGHT 而已:

SELECT * FROM t1 RIGHT [OUTER] JOIN t2 ON 连接条件 [WHERE 普通过滤条件];

内连接的语法

内连接和外连接的根本区别就是在驱动表中的记录不符合 ON 子句中的连接条件时不会把该记录加入到最后的结果集

其实针对内连接,MySQL提供了好多不同的语法,我们以 t1 和 t2 表为例瞅瞅:

SELECT * FROM t1 [INNER | CROSS] JOIN t2 [ON 连接条件] [WHERE 普通过滤条件];

也就是说在 MySQL 中,下边这几种内连接的写法都是等价的:

SELECT * FROM t1 JOIN t2;
SELECT * FROM t1 INNER JOIN t2;
SELECT * FROM t1 CROSS JOIN t2;
-- 上边的这些写法和直接把需要连接的表名放到 FROM 语句之后,用逗号 , 分隔开的写法是等价的:
SELECT * FROM t1, t2;

推荐 INNER JOIN 的形式书写内连接(因为 INNER JOIN 语义很明确嘛,可以和 LEFT JOIN 和 RIGHT JOIN 很轻松的区分开)。

由于在内连接中ON子句和WHERE子句是等价的,所以内连接中不要求强制写明ON子句。

连接的本质就是把各个连接表中的记录都取出来依次匹配的组合加入结果集并返回给用户。不论哪个表作为驱动表,两表连接产生的笛卡尔积肯定是一样的。而对于内连接来说,由于凡是不符合 ON 子句或WHERE 子句中的条件的记录都会被过滤掉,其实也就相当于从两表连接的笛卡尔积中把不符合过滤条件的记录给踢出去,所以对于内连接来说,驱动表和被驱动表是可以互换的,并不会影响最后的查询结果。

但是对于外连接来说,由于驱动表中的记录即使在被驱动表中找不到符合 ON 子句连接条件的记录,所以此时驱动表和被驱动表的关系就很重要了,也就是说左外连接和右外连接的驱动表和被驱动表不能轻易互换。

连接的原理

重点是MySQL采用了什么样的算法来进行表与表之间的连接,了解了这个之后,大家才能明白为啥有的连接查询运行的快如闪电,有的却慢如蜗牛。

嵌套循环连接(Nested-Loop Join)

对于两表连接来说,驱动表只会被访问一遍,但被驱动表却要被访问到好多遍,具体访问几遍取决于对驱动表执行单表查询后的结果集中的记录条数。对于内连接来说,选取哪个表为驱动表都没关系,而外连接的驱动表是固定的,也就是说左(外)连接的驱动表就是左边的那个表,右(外)连接的驱动表就是右边的那个表。

通用的两表连接过程如下图所示:

image-20240809234214063

如果有3个表进行连接的话,那么 步骤2 中得到的结果集就像是新的驱动表,然后第三个表就成为了被驱动表,重复上边过程,也就是 步骤2 中得到的结果集中的每一条记录都需要到 t3 表中找一找有没有匹配的记录,用伪代码表示一下这个过程就是这样:

for each row in t1 { #此处表示遍历满足对t1单表查询结果集中的每一条记录
for each row in t2 { #此处表示对于某条t1表的记录来说,遍历满足对t2单表查询结果集中的每一条记录
for each row in t3 { #此处表示对于某条t1和t2表的记录组合来说,对t3表进行单表查询
if row satisfies join conditions, send to client
}
}
}

这个过程就像是一个嵌套的循环,所以这种驱动表只访问一次,但被驱动表却可能被多次访问,访问次数取决于对驱动表执行单表查询后的结果集中的记录条数的连接执行方式称之为 嵌套循环连接 ( Nested-Loop Join ),这是最简单,也是最笨拙的一种连接查询算法。

使用索引加快连接速度

我们知道在 嵌套循环连接 的 步骤2 中可能需要访问多次被驱动表,查询 t2 表其实就相当于一次单表扫描,我们可以利用索引来加快查询速度哦。

查询驱动表 t1 后的结果集中有两条记录, 嵌套循环连接 算法需要对被驱动表查询2次:

  • 当 t1.m1 = 2 时,去查询一遍 t2 表,对 t2 表的查询语句相当于:

    SELECT * FROM t2 WHERE t2.m2 = 2 AND t2.n2 < ‘d’;

  • 当 t1.m1 = 3 时,再去查询一遍 t2 表,此时对 t2 表的查询语句相当于:

    SELECT * FROM t2 WHERE t2.m2 = 3 AND t2.n2 < ‘d’;

原来的 t1.m1 = t2.m2 这个涉及两个表的过滤条件在针对 t2 表做查询时关于 t1 表的条件就已经确定了,所以我们只需要单单优化对 t2 表的查询了,上述两个对 t2 表的查询语句中利用到的列是 m2 和 n2 列,我们可以:

  • 在 m2 列上建立索引,因为对 m2 列的条件是等值查找,比如 t2.m2 = 2 、 t2.m2 = 3 等,所以可能使用到ref 的访问方法,假设使用 ref 的访问方法去执行对 t2 表的查询的话,需要回表之后再判断 t2.n2 < d 这个条件是否成立。

    这里有一个比较特殊的情况,就是假设 m2 列是 t2 表的主键或者唯一二级索引列,那么使用 t2.m2 = 常数值 这样的条件从 t2 表中查找记录的过程的代价就是常数级别的。我们知道在单表中使用主键值或者唯一二级索引列的值进行等值查找的方式称之为 const ,而设计 MySQL 的大叔把在连接查询中对被驱动表使用主键值或者唯一二级索引列的值进行等值查找的查询执行方式称之为eq_ref

  • 在 n2 列上建立索引,涉及到的条件是 t2.n2 < ‘d’ ,可能用到 range 的访问方法,假设使用 range 的访问方法对 t2 表的查询的话,需要回表之后再判断在 m2 列上的条件是否成立。

假设 m2 和 n2 列上都存在索引的话,那么就需要从这两个里边儿挑一个代价更低的去执行对 t2 表的查询。当然,建立了索引不一定使用索引,只有在 二级索引 + 回表 的代价比全表扫描的代价更低时才会使用索引。

另外,有时候连接查询的查询列表和过滤条件中可能只涉及被驱动表的部分列,而这些列都是某个索引的一部分,这种情况下即使不能使用 eq_ref 、 ref 、 ref_or_null 或者 range 这些访问方法执行对被驱动表的查询的话,也可以使用索引扫描,也就是 index 的访问方法来查询被驱动表。所以我们建议在真实工作中最好不要使用 * 作为查询列表,最好把真实用到的列作为查询列表。

基于块的嵌套循环连接(Block Nested-Loop Join)

扫描一个表的过程其实是先把这个表从磁盘上加载到内存中,然后从内存中比较匹配条件是否满足。现实生活中的表可不像 t1 、 t2 这种只有3条记录,成千上万条记录都是少的,几百万、几千万甚至几亿条记录的表到处都是。内存里可能并不能完全存放的下表中所有的记录,所以在扫描表前边记录的时候后边的记录可能还在磁盘上,等扫描到后边记录的时候可能内存不足,所以需要把前边的记录从内存中释放掉。我们前边又说过,采用 嵌套循环连接 算法的两表连接过程中,被驱动表可是要被访问好多次的,如果这个被驱动表中的数据特别多而且不能使用索引进行访问,那就相当于要从磁盘上读好几次这个表,这个 I/O 代价就非常大了,所以我们得想办法:尽量减少访问被驱动表的次数

当被驱动表中的数据非常多时,每次访问被驱动表,被驱动表的记录会被加载到内存中,在内存中的每一条记录只会和驱动表结果集的一条记录做匹配,之后就会被从内存中清除掉。然后再从驱动表结果集中拿出另一条记录,再一次把被驱动表的记录加载到内存中一遍,周而复始,驱动表结果集中有多少条记录,就得把被驱动表从磁盘上加载到内存中多少次。所以我们可不可以在把被驱动表的记录加载到内存的时候,一次性和多条驱动表中的记录做匹配,这样就可以大大减少重复从磁盘上加载被驱动表的代价了。所以设计 MySQL 的大叔提出了一个join buffer 的概念, join buffer 就是执行连接查询前申请的一块固定大小的内存,先把若干条驱动表结果集中的记录装在这个 join buffer 中,然后开始扫描被驱动表,每一条被驱动表的记录一次性和 join buffer 中的多条驱动表记录做匹配,因为匹配的过程都是在内存中完成的,所以这样可以显著减少被驱动表的 I/O 代价。使用 join buffer 的过程如下图所示:

image-20240809235221352

最好的情况是 join buffer 足够大,能容纳驱动表结果集中的所有记录,这样只需要访问一次被驱动表就可以完连接操作了。设计 MySQL 的大叔把这种加入了 join buffer 的嵌套循环连接算法称之为 基于块的嵌套连接(Block Nested-Loop Join)算法。

这个 join buffer 的大小是可以通过启动参数或者系统变量 join_buffer_size 进行配置,默认大小为 262144字节 (也就是 256KB ),最小可以设置为 128字节 。当然,对于优化被驱动表的查询来说,最好是为被驱动表加上效率高的索引,如果实在不能使用索引,并且自己的机器的内存也比较大可以尝试调大 join_buffer_size 的值来对连接查询进行优化。

另外需要注意的是,驱动表的记录并不是所有列都会被放到 join buffer 中,只有查询列表中的列和过滤条件中的列才会被放到 join buffer 中,所以再次提醒我们,最好不要把 * 作为查询列表,只需要把我们关心的列放到查询列表就好了,这样还可以在 join buffer 中放置更多的记录呢哈。